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Uranium–molybdenum alloy powders are raw material of uranium alloy fuels prepared by powder met-
allurgic process in nuclear reactor. U–10 wt.%Mo alloy powders were prepared directly by hydride-
milling-dehydride process without c phase to a phase transformation under long time heat treatment,
the powders were studied by XRD and SEM. During absorb–desorb hydrogen cycle, the absorbed hydro-
gen quantity of U–10 wt.%Mo alloy increased with the cycle number increasing, after eight cycles, the
absorbed hydrogen quantity reached a stable value, and absorbed hydrogen was saturated in alloy.
U–10 wt.%Mo alloy hydride was milled in argon atmosphere, then, alloy hydride were heated to desorb
the absorbed hydrogen at 600 �C, after these processes, U–10 wt.%Mo alloy powders were obtained. XRD
results show that U–10 wt.%Mo alloy powders was still c phase, its indicated that during preparation, the
alloy was always body centered cubic structure, phase transformation process did not exist. SEM obser-
vation showed that the particle shape of U–10 wt.%Mo alloy powders was nonuniform, but particle size
was less than 50 lm, some were below 10 lm.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

It is well-known that U–Mo dispersion fuel in c-phase state is
considered as a perspective fuel in frames of Reduced Enrichment
for Research and Test Reactors (RERTR) program due to its high
irradiation stability and corrosion resistance [1–6]. At present time
the set of new high density uranium alloys is under investigation,
among which there are U–Mo alloys with different Mo content. To
manufacture dispersion fuel elements on the basis of these alloys,
it is necessary to develop effective powder production methods.
Among the number of existing powder production methods, there
are several most perspective ones which can be suitable for high
density uranium alloys, such as mechanical crushing (milling,
grinding, etc.) [7–10], atomization [11–13], as well as hydride–
dehydride (HD) process [7,14–16]. Among these powder produc-
tion methods, HD process is widely used, because U–Mo powders
obtained by HD process have less impurities, moreover, different
powder particle sizes can be attained by raw material particle size
and hydride–dehydride cycle number controlling. But before HD
process, in order to quicken U–Mo alloy hydrogen-adsorption reac-
tion rate, U–Mo alloy must be heat-treated to make a phase sepa-
rated out at grain boundary, after hydrogen-desorption, it must be
heat-treated again to revert to c phase. The HD process become
complex because of the alloy heat treatment, further more, heat
ll rights reserved.
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treatment needs much time, and powder production period was
prolonged.

In this study, U–10 wt.%Mo alloy powders were directly pre-
pared by hydride-milling-dehydride (HMD) process without c
phase to a phase transformation under long time heat treatment,
and the powders were characterized by XRD and SEM for applica-
tion as a dispersant for research reactor fuel elements.
2. Material and methods

U–10 wt.%Mo alloy are prepared by vacuum induction melting.
The alloy samples, provided by Zhi-gang Wang et al., are pieces
cutted from alloy ingot. Before HMD process, oxidation layer on al-
loy surface was removed in nitric acid until the surface presented
metallic luster, then, the acid was remove in de-ionized water
and anhydrous alcohol, after alloy surface was dried by an argon
gas flow, 155 g U–Mo pieces were put in hydrogenation reactor,
all the operations were carried out in glove box full of argon.

Before hydrogen-adsorption, the reactor was pumped out to
less than 40 Pa at room temperature to remove gas impurities ad-
sorbed on reactor wall, then, it was pumped out to less than 4 Pa at
250 �C and kept 30 min to remove the absorbed water, finally, it
was pumped out to less than 1 Pa at 600 �C and kept 1 h to make
fresh alloy surface revealed and quicken U–10 wt.%Mo alloy hydro-
gen-adsorption reaction.

The hydride–dehydride cycles of U–10 wt.%Mo alloy were
carried out in an experimental system shown in Fig. 1, the
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Fig. 1. Schematic diagram of experimental system.
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Fig. 2. XRD pattern of U–10 wt.%Mo alloy: (a) vacuum induction melting ingot and
(b) after polished.
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Fig. 3. Relationship between absorbed hydrogen quantity of U–10 wt.%Mo alloy
and cycle number.

Fig. 4. Photograph of U–10 wt.%Mo alloy powder.
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Fig. 5. XRD pattern of U–10 wt.%Mo alloy powder.
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hydrogenation reactor was stainless steel with one end closed by
flange. Hydrogen-adsorption reaction were carried out at room
temperature, initial pressure was 0.5 MPa, the quantity of ad-
sorbed-hydrogen was measured by a standard gas holder and pres-
sure sensor. After the adsorbed-hydrogen quantity was saturated,
U–10 wt.%Mo alloy hydride was heated at 600 �C to desorb hydro-
gen, and hydride–dehydride process was repeated. When the ad-
sorbed-hydrogen quantity reached a stable value, U–10 wt.%Mo
alloy hydride was milled in argon atmosphere, then, the hydride
was heated at 600 �C to desorb hydrogen, and the U–10 wt.%Mo
powder was obtained.



Fig. 6. SEM micrographs of U–10 wt.%Mo powder: (a) �300, (b) �500 and (c) �1000.
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U–10 wt.%Mo alloy ingot of vacuum induction melted and the
powder were analyzed by X-ray diffraction, using the Cu Ka wave
length. The morphology and microstructure of the powder particle
size were characterized with a scanning electron microscope
(SEM).
3. Results and discussion

In case of U–10 wt.%Mo alloy ingot prepared by vacuum induc-
tion melting (as shown in Fig. 2a) and after polished by No. 600
carborundum paper (as shown in Fig. 2b), the XRD pattern revealed
the complete body centered cubic c-uranium formation.

In Fig. 2a, there were two diffraction peaks when diffraction an-
gle was between 25� and 30�, it was due to the oxidation layer on
the alloy ingot surface, after the ingot surface was polished by car-
borundum paper, the oxidation layer was removed, and these two
peaks disappeared, as shown in Fig. 2b.

c phase U–10 wt.%Mo alloy sample was put in hydrogenation
reactor, the hydride–dehydride cycles were carried out. The rela-
tionship between absorbed hydrogen quantity of U–10 wt.%Mo al-
loy and cycle number was shown in Fig. 3. It was observed that the
absorbed hydrogen quantity of U–10 wt.%Mo alloy increased with
the cycle number increasing, finally, it reached a stable value. The
sample surface was treated before hydride, but there was still quite
thin oxidation layer, therefore, the absorbed hydrogen quantity
was little at the beginning. After hydrogen-adsorption, the alloy
swelled and desquamated from the matrix alloy, then, fresh alloy
surface revealed and the absorbed hydrogen quantity increased.
Eventually, absorbed hydrogen was saturated in alloy and the ab-
sorbed hydrogen quantity reached a stable value.

After the absorbed hydrogen quantity of alloy reached a stable
value, the U–10 wt.%Mo hydride was put in a stainless steel milling
can in glove box full of argon, and milled for 5 min in argon atmo-
sphere, then, the hydrogen in milled alloy was desorbed in hydro-
genation reactor at 600 �C. The U–10 wt.%Mo powder obtained as
shown in Fig. 4.

The XRD pattern of U–10 wt.%Mo powder (as shown in Fig. 5)
indicate that it was still body centered cubic c-uranium formation
after HMD process.

The shape of the U–10 wt.%Mo powder as observed by scanning
electron microscope (SEM) is shown in Fig. 6, the shape of all the
powder particles and the particle sizes were nonuniform. But all
the particle size was below 50 lm, some were below 10 lm.
4. Conclusion

In order to develop nuclear fuel with c phase U alloy, U–
10 wt.%Mo alloy powders are produced by a hydride-milling-dehy-
dride method. The characteristics of the HMD process and the alloy
powders investigated are as follows:

1. U–10 wt.%Mo alloy powders were obtained by HMD process, c
phase to a phase transformation under long time heat treat-
ment was not needed, the HMD process is simple and feasible.

2. At the beginning, absorbed hydrogen quantity of U–10 wt.%Mo
alloy is quite little, but it increases with the hydride–dehydride
cycle number increasing.

3. XRD analysis of U–10 wt.%Mo alloy ingot and powders indi-
cated that c phase to a phase transformation under long time
heat treatment did not exist during HMD process.

4. SEM observation of U–10 wt.%Mo alloy powders revealed that
all the particle size was below 50 lm, some were below
10 lm, but the shape of the powder particles and the particle
sizes were nonuniform.
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